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Based on the heat conduction equation, mathematical models (one- and two-dimensional) have been 

developed to describe a nonstationary temperature field in an abrasive tool. The physicochemical 

transformations occurring in it and of the mobility of its peripheral surface are taken into account. 

An important factor for the efficiency of the process of grinding, the quality of machining, and the durability 

of an abrasive tool, itself a multicomponent system, is the strength of the bridges of the bond and its thermal state. 

It is thought that the thermophysical characteristics of the material of the disk and the kinematics of the process 

influence the quantity of heat that gains access to the disk [I, 2]. Recently the possibiIity of the occurrence of 

chemical reactions in the zone of grinding has been established [3 ]. The thermal effects of these reactions, just as 

those of physical processes, are capable of exerting a noticeable effect on the formation of the temperature fields. 

In [2 ] the problem of finding the temperature field in an abrasive disk during cyclic heating of it was solved. 

But such important factors as the geometric dimensions of the disk and the physicochemical transformations in it 

were not taken into account there. In the present work we suggest two mathematical models of the process of heating 

an abrasive disk that generalize the model proposed in [2 ]. 

We consider a rapidly rotating abrasive disk (Fig. 1). A heat source acts operative on a small portion of its 

peripheral surface; beyond the zone of the influence of the source the surface of the disk is cooled by convective 

heat transfer, i.e., the disk is loaded by an asymmetric heat source. During heating, physicochemical processes 

take place in the interior of the instrument that are accompanied by the liberation or absorption of heat. Let us 

denote the enthalpy of the physicochemical processes by H1 and the concentration of the reagent by v. Then the 

power of the distributed sources or sinks of heat at the time t will be HlOv/Ot. 

Since the disk rotates, all of the points of the peripheral surface pass successively through the stages of 

cooling and heating, i.e., all of these points are subjected to identical temperature conditions. Thus, the problem 

can be considered to be axisymmetric, with the graph of the time dependence of temperature for an arbitrary point 

of the periphery having the form shown in Fig. 2 (the curve fl (t)). We consider, for example, a typical heating- 

cooling cycle. A small portion F~ of the periphery is heated in the time At = t2 - tl from the initial temperature 

T 1 to the final temperature 7"2. This portion cools off in the time At = t3 - t2 to the final temperature T 3 > T 1, 

and so on in cycles. After a certain interval of time to the process of heating of the peripheral surface reaches a 

steady state, i.e., after the time to the temperature of the periphery is established at a fixed level Tlev. 

We employ the following simplification: we replace the curve fl (t) by the smoothed curve f2(t). The 

smoothing can be done by the least-squares method by replacing fl (t) by a parabola of the form at 2 + bt + c. This 

replacement does not change the qualitative picture of the temperature field in the abrasive disk. 

Thus, on the peripheral surface F2 (see Fig. 1) we can write the following boundary condition: 

T = f z ( t  ) on F z,  (1) 

where 
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Fig. 1. Abrasive disk: n, vector of the unit external normal to the surface F1; 

FI, F2, F3, surfaces bounding the disk, with F2 = F f  U F~, where F~- is the 

heated portion of the working surface of the disk and F2- is the portion of the 
surface being cooled. 
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Fig. 2. Graphs of the functions fl (t) and fz( t)  describing the change in the 
temperature of the peripheral (working) surface with time. 

a t 2 + b t + c ,  0_<t_< to ,  

/2(t)= Tier, t>_to. 

On the side surfaces F1 of the disk, heat exchange with the surrounding medium takes place, i.e., 

21 OT a - - ~ = - a ( T - T ~ 1 7 6  on r 1. (2) 

The disk is clamped on a metal axis, and consequently, F 3 is the place of contact of the disk with the metal 
axis. Therefore, it is natural to assume that there is a distributed thermal capacity on Fa, i.e., 

~-1 0T = dT 
- -  RoC2P 2 - -  on l-' 3 . (3) 
Or Ot 
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The initial condition is 

^ ,', A A 
T ( r , z ,  O ) = T  0 at Ro < r < R , - -~ <_ z <_ -~.  

Supplementing boundary  conditions (1)-(3) with the heat conduction equation writ ten in cylindrical 

coordinates r ~, ~o, z, we arrive at the following mathematical model of the process of heating the abrasive disk: 

o r  1 _ 21~'0___ + 0..0._ 21 - .t_ H I _ _  
ClPl Ot r Or Or Oz Oz Ot 

^ A A (4.1) t > 0 ,  R o < - r < - R ,  - - ~ < z < ~ ,  

^ (4 .2 )  T = f2 ( t ) ,  r = R ,  

~t 1 0 T  A (4.3) O--~ = - a ( T - T ~ ) , z =  ++_ -~ , 

21 OT OT ^ (4.4) 
- -  = R o c ~ o  2 -  , r = R o ,  
Or Ot 

A A (4.5) A 

T = T  0 at t = O ,  R o < r < - R ,  - - ~ < _ z < _ ~ .  

Making certain fur ther  assumptions, it is possible to reduce mathematical model (4.1)-(4.5) to a one- 

dimensional model in spatial variables. 

Due to the low thermal conductivity of the abrasive disk, we will assume that the temperature of the disk 

does not change over its thickness, i.e., we will assume that the unknown temperature field T is a function only of 
i n ,  

the radial coordinate r. Averaging the heat conduction equation along the axis Oz under  these conditions and taking 

into account boundary condition (4.3), we obtain a modified heat conduction equation: 

clp 1 - ^ - z l r ~  X - - - ( r -  T~) + H  1 0 v .  (5) 
Ot r Or Or A Ot 

Hereafter  it is preferable to work with dimensionless quantities: 

r = r / R ,  c = e l /CO,  p = p l / P O ,  )l = 2 1 / 2 0 ,  (6) 

H =  H 1 / H o ,  u =  ( T -  T ~ ) / ( T l e  v -  T~)  , v =  (21/ClPl R2) t ,  h =  H o / c  O (Tle v -  T ~ ) ,  

where  co, Po, 20, HO are  the t empera tu re - independen t  components  of the quantit ies Cl, Pl ,  21, H1 (i.e., 

Cl = co + c~(T), 21 --;to + 2^(T), and so on); u is the dimensionless temperature function; r is the Fourier number. 

Equation (5) in dimensionless form is 

(7) 

Supplementing Eq. (7) with boundary conditions (4.2) and (4.4) and initial condition (4.5) (assuming that 

T -- TO), we arrive at a one-dimensional and strongly nonlinear mathematical model of the process of heating the 

abrasive disk: 

cp - h H  Ov ) Ouor = 2  02uor 2 + 2r OUor + duO2 Ou 2 2aR2u.,!.0A (8.1) 

YE (0  - 7-oo (8.2) 
u -- Tier _ T~ ' r = 1 , ( R o / R )  < r < 1 ,  
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Ou R 0 Ou 
-~r = (c2P2/C0~ n Or '  r = R o / R  , (8.3) 

u = 0  at ~ = 0 ,  ( R o / R )  <r_< 1. (8.4) 

Making several more simplifying assumptions, we may obtain additional information about the processes 

occurring in the disk. In fact, for large specific heat loads, high heating rates, and a low heat conduction coefficient 

(which occurs during abrasive treatment) it is natural in the first approximation to consider the region of 

physicochemical transformations to be a surface, i.e., an interface separating the substance that reacted from that 

which has not reacted. To derive the law of motion of this interface we shall avail ourselves of the solution of the 

Stefan problem [4 ]. We arbitrarily take the temperature distribution along the radius in the form: 

v - ^ 

T = Tie v ^ r ,  
b 

where ~" is the coordinate of the position of the moving interface of physicochemical transformations at a given 

instant; Tr is the temperature of the moving interface. Then the velocity of the interface in moving from the 

periphery to the center of the disk can be determined approximately, just as in [4 ]: 

db" ;to (r~ev - r~) 
H o P  0 ~ = - ^ 

d t  b 

Using formulas (6), we make the above equation dimensionless: 

db u r 1 

dr  h b '  

where 

Tie v --' T r 
b = b / R ,  U r -  Tie v - Too" 

(9)  

The initial conditions for integrating Eq. (9) are the following: 

b = l  at 3 = 0 .  (10) 

The integration of Eq. (9), which satisfies initial conditions (10), yields 

b =  1 ---~--r , 

i.e., at the beginning of the process (at small values of 3) the rate of decrease of the radius of the disk due to its 

wear is small. As the duration of the occurrence of the process (the time of disk service) increases, the rate of its 

wear increases steadily. The enthalpy of the physicochemical transformations exerts a similar influence: the more 

endothermic the transformations are, the smaller the rate of wear. This is confirmed by experimental data. 

Taking into account the mobility of the front of the physicochemical processes and the cyclic character of 

the heating of the disk, we reduce Eq. (7) to fixed boundaries by means of a linear transformation: 

r(3) = ( R o / R )  + x [b (3) - ( R o / R  ) ] = r O + x (b - rO) , 

where x varies within the limits 0 - x __. 1. We obtain the following modification of the one-dimensional model 

(8.1)-(8.4): 

2 Ou - - +  
[r o + x ( b - r O )  l ( b - r O )  Ox 

T > 0 ,  0_<x__< 1, (11.1) 

cp - h H  O--v-v) O__uu _ 2 02u + 

Ou or [b - ( R o / R ) 1 2  Ox 2 

+ 1 
- - -  - - U ~  

(b to) 2 0 u  2OA 
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u = ( f z  ( t )  - 7 " o o ) / ( 7 " l e  v - x = 1 ,  

�9 Ou Ou 
(~t/(b - ro) ) -~x = (C2pz/C~176176 rO - ~ '  x = O, 

u = O  at r = O ,  O < _ x < l .  

(11.2) 

(11.3) 

(11.4) 

C O N C L U S I O N S  

1. We have obtained mathematical models of the process of heating an abrasive disk. They generalize and 

refine the mathematical model suggested in [ 1 ]. 
2. Proceeding from a number of natural assumptions, we have obtained additional information about the 

process of heating: 

a) the time of the process increases with increase in the endothermal effect of the physicochemical 
transformations (dimensionless number h), i.e., the durability of the disk grows; 

b) the time of the process decreases with increase in Ur, while the rate of the process increases, i.e., the 

durability of the disk decreases. 

3. We have revealed the possibilities for an increase in the efficiency of operation of the abrasive tool and 

its durability by controlling the physicochemical processes in the cutting zone. 

4. Mathematical models (4.1)-(4.5), (8.1)-(8.4), (11.1)-(11.4) can be taken as a basis for calculating the 

heating process on a computer by some numerical method. 

N O T A T I O N  

cl, pl ,  21, heat capacity, J / (kg.K),  density, kg/m 3, and thermal conductivity, W/(m. K), of the abrasive 

disk, respectively; c2, P2, heat capacity and density of the metal axis on which the disk is clamped; H1, enthalpy 

of the physicochemical transformations, j/m3; v, concentration of the reagent, %; a, heat transfer coefficient, 

W/(m 2" K); Too, temperature of the external medium, K; TO, initial temperature of the disk, K; Ty, temperature 

developed on the working surface of the disk, K; T, temperature of the abrasive disk, K; r ,  z, radial and transverse 

coordinates; R, R0, external and internal radii of the disk, mm; A, thickness of the disk, mm; t, time, sec; t 0, time 
of arrival of arrival of the working-surface temperature at a steady state, sec. 
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